

SECURE AUDITING FOR LINUX (SAL)
SOFTWARE DESIGN DOCUMENT

Version 1.0
Date: 02/28/03

Security Markings: System documentation is Unclassified.

Distribution Statement: This document is available for general release to all interested parties. The software associated with Secure Audit for
Linux along with this document is license under the terms of the GNU General Public License (GPL) and as such is considered Open Source.
The software and this documentation is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. You should have received a
copy of the GNU General Public License along with SAL; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

SAL Software Design Document 1.0 - 1 -

Table of Contents
1.0 Identification.. 3

1.1 Background... 3
2.0 Document Overview .. 5
3.0 References.. 6
4.0 High Level Design and Architecture ... 7

4.1 Use of Encryption with SAL... 8

4.2 Trade Offs ... 8

4.3 High Level Design of the Components... 10

4.3.1 Instrumented Client... 10
4.3.2 SAL Log Server .. 13
4.3.3 SAL Java GUI... 15
4.3.4 SAL Audit Viewer .. 16
4.3.5 Configuration File Example.. 18

5.0 Detail design of Components... 22
6.0 Glossary ... 22
Appendix A – Requirements traceability/System Call List .. 23
Appendix B – Secure Auditing for Linux (SAL): Audit Data Structures... 29

Client Data Structures ... 29

Kernel Audit Event ... 29

Audit Daemon Data Structure... 30

Client – Server Data Structures... 30

Format 1.0 Audit Package Structure... 31

Format 2.0 Audit Package Structure... 32

SAL Software Design Document 1.0 - 2 -

1.0 Identification

Secure Auditing for Linux is a research project funded by the Defense Advanced Research
Projects Agency (DARPA). The project will develop a kernel level auditing package for Linux
(Red Hat distribution) that is compliant with the Common Criteria specifications (DoD 5200.28-
STD C2 level equivalency) and provides features to protect logged information from
unauthorized modification through the use of encryption techniques. The overall goal of SAL is
to produce log files that can be taken into a U.S. court and used as direct evidence in their
proceedings.

1.1 Background

According to the Guidance and Policy for the Department of Defense (DoD) Global Information
Grid (GIG) Information Assurance (IA) document, it is DoD policy that the DoD defense in
depth strategy will provide appropriate degrees of protection to all computing environments (i.e.
hosts and applications). Also according to the DoD Guidance and Policy document, GIG
information systems will be monitored in order to detect, isolate, and react to intrusions,
disruption of services, or other incidents that threaten the security of DoD. It is also required that
there be a way to collect and retain audit data to support forensics relating to misuse, penetration,
reconstruction, or other investigations. It is well known that the current auditing capabilities of
Linux do not satisfy DoD 5200.28-STD C2 specifications (now defined by the Common
Criteria).). NSA, developing Security Enhanced Linux, has identified auditing as an area that
requires improvement. According to the GIG IA document, all GIG information systems and
networks will be certified and accredited in accordance with the Department of Defense
Information Technology Security Certification and Accreditation Process (DITSCAP - DoD
Instruction 5200.40). During a forensics investigation, law enforcement will often rely on audit
and transaction logs as a source of evidence. However, they must also be able to prove that a
malicious person has not altered those logs. Section 69 of the Police and Criminal Evidence Act
1984 states “…Logs produced by a computer are not admissible as evidence unless it can be
shown that there is no reasonable ground for believing them to be inaccurate and the computer
was operating properly during the collection of data”. If it can be shown that the logs could and
may have been tampered with, they are not admissible as evidence. Forensics investigators can
have minimum assurance on logs that maintain date/time stamps and checksums. According to
the DoD GIG IA document, systems must “collect and retain audit data to support forensics
relating to misuse, penetration reconstruction, or other investigations.”

 From the DoD and law enforcement perspective, audit logs are not only a necessity, but also a
requirement to provide a secure open-source operating environment. The goal of this project has
been to create a kernel-level auditing facility that not only monitors all processes and records
events, but also provides a way to store the data that would allow it to be admissible in a court of
law (i.e. encrypted, cryptographic checksum, exporting to a serial device, etc). We believe this
capability would be a benefit not only to law enforcement, but also to all of DoD in support of
the GIG information assurance objectives.

As stated earlier, there is a lack of a satisfactory auditing package for the Linux kernel. If
an open source operating system is to be seriously considered for use on the Global Information
Grid, it must meet basic security standards. Linux does not currently provide C2 level auditing

SAL Software Design Document 1.0 - 3 -

as defined by the Trusted Computer Systems Evaluation Criteria (TCSEC - DoD 5200.28-STD).
One of the fundamental security requirements in the TCSEC is accountability. From the
publication: “Audit information must be selectively kept and protected so that actions
affecting security can be traced to the responsible party. A trusted system must be able to
record the occurrences of security relevant events in an audit log. The capability to select the
audit events to be recorded is necessary to minimize the expense of auditing and to allow
efficient analysis. Audit data must be protected from modification and unauthorized destruction
to permit detection and after-the-fact investigations of security violations.” For C2 level
auditing, the Trusted Computing Base (TCB) must be able to create, maintain, and protect from
modification or unauthorized access or destruction, an audit trail of accesses to the objects it
protects. The audit data shall be protected by the TCB so that read access to it is limited to those
who are authorized for audit data. The TCB shall be able to record the following types of events:
use of identification and authentication mechanisms, introduction or objects into a user's address
space (e.g., file open, program initiation), deletion of objects, and actions taken by computer
operators and system administrators and/or system security officers, and other security relevant
events. For each recorded event, the audit record shall identify: date and time of the event, user,
type of event, and success or failure of the event. For identification/authentication events the
origin of request (e.g., terminal ID) shall be included in the audit record. For events that
introduce an object into a user's address space and for object deletion events the audit record
shall include the name of the object. The ADP system administrator shall be able to selectively
audit the actions of any one or more users based on individual identity. To provide some of the
basic requirements of TCSEC, it would need to at least report on the following: 1) date/time
stamps for all user logons and logoffs, bad password attempts, adding/removing user accounts,
remote access to local files. 2) File operations, like open, close, create, delete, and rename. 3)
Changes to security privileges (chmod, chown, setuid), information on system load or disk space
usage (for covert channels). In addition to the TCSEC, the Common Criteria, the new criteria
for evaluating information technology security, will also be a source of information in ensuring
basic auditing functionality is provided. Some of the other activities that should be monitored
include IPC activity, network activity, some system calls, resource locking activities, and process
termination.

Not only can this audit package become a valuable troubleshooting tool for a system
administrator, it can also be a tool for computer forensics. Audit logs are one source of
information in a computer forensics investigation, but can be a valuable source. Date/time
stamps reflecting when a user accessed the system or accessed/modified files can present an
accurate picture of events. However, tools exist that allow malicious people to modify audit logs
on some systems. With the existence of tools like those, it is easy to understand why there is not
a high level of assurance on audit logs. Providing encryption, file monitoring, and multiple
locations for file storage (local, remote, serial device), system administrators can have a higher
level of confidence that audit logs have not been tampered with.

According to the GIG Information Assurance Guideline and Policy document, all systems

must pass the DITSCAP. If a C2 compliant auditing package is not developed for the Linux
kernel, then Linux systems will not be allowed to be part of the GIG. It is essential that security
packages such as this make it into the Linux kernel and other open source operating system
kernels if they are to play a role in the GIG.

SAL Software Design Document 1.0 - 4 -

2.0 Document Overview
This document is intended to provide a description of the architecture, design and development
the Secure Auditing for Linux (SAL). The document will initially describe the high level
architecture of SAL, followed by a high-level description of the major components of the system,
followed by a detail-level description of the components. The detailed description of the
components is actually being generated using Doxygen, a source code documentation extraction
tool. Finally, a Requirements Traceability Matrix (RTM) will be provided to that maps all
software requirements to a specific component in the design document. Configuration files and
message interface descriptions will be included as appendices to this document.

Fonts used in this document –
Italic Configuration File / Script File / Book Title
Courier (12 pt) Name of program that is executed.
Courier (10 pt) Class/Component Name/System Call

SAL Software Design Document 1.0 - 5 -

References

a. “Secure Auditing for Linux Software Requirements Specification Version 1.02” July 2,
2002

b. DoD CIO Guidance and Policy Memorandum No. 6-8510 “Department of Defense
Global Information Grid Information Assurance” June 16, 2000

c. DoD 5200.28-STD, "DoD Trusted Computer Security Evaluation Criteria," December
1985

d. Common Criteria for Information Technology Security Evaluation Version 2.1, August
1999

e. National Security Telecommunications and Information Systems Security Policy
(NSTISSP) No. 11, "National Policy Governing the Acquisition of Information
Assurance (IA) and IA-enabled Information Technology Products," January 2000

f. DoD Instruction 5200.40, "DoD Information Technology Security Certification and
Accreditation (C&A) Process (DITSCAP)," December 30, 1997

g. DoD Directive 8500.1 “Information Assurance” October 24, 2002
h. Network Security with OpenSSL by John Viega, Matt Messier, Pravir Chandra; O'Reilly

& Associates; ; June 15, 2002
i. Apache XML documentation
j. PEO encryption documentation
k. SDSC Secure Syslog
l. Syslog
m. Appropriate RFC’s

SAL Software Design Document 1.0 - 6 -

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Viega%2C John/002-0574503-7253613
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Messier%2C Matt/002-0574503-7253613
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Chandra%2C Pravir/002-0574503-7253613
http://xml.apache.org/
http://security.sdsc.edu/software/sdsc-syslog/
http://www.syslog.org/

3.0 High Level Design and Architecture

The Secure Auditing for Linux (SAL) is a kernel level auditing tool used to accurately and
securely log audit events. SAL is a client/server-based application that generates audit events on
client systems, encrypts the events, and then transmits them to a dedicated log server for secure
storage. The SAL application is broken into 3 major functional areas, a SAL Instrumented
Client (SIC), a Secure Network Transmission Tunnel (SNTT) and a SAL Log Server (SLS).

We start the architecture discussion with a brief talk about the SIC. A SIC is any computer that
contains a special audit generating Linux operating system (OS). The special OS contains static
kernel-level source code that monitors system activity. This code monitors a specific set of pre-
described system calls (that must be defined at OS kernel building time). As monitored system
calls are executed the modified OS records specific state data from the computer and generates
an audit event. These audit events are stored in kernel level system buffers until a SAL
application daemon, auditd, has the opportunity to record the kernel level system buffers to
disk. From disk the audit events are collected, encrypted and then transmitted to the SLS via the
SNTT.

The SNTT is a secure, encrypted network transmission protocol. We have currently
implemented this protocol using the Secure Socket Layer (SSL) libraries developed by the
OpenSSL project (www.openssl.org). This component of the SAL Architecture is very straight-
forward. It is used to establish secure connections between the client and the server. It is further
used to provide file-based key management. This SNTT component is integrated into both the
SIC and the SLS. On the client end the SNTT is integrated into an application level program
called auditclient. When the auditclient application is started, the SNTT attempts to
establish a connection with the SLS portion of the SNTT. Once a connection is established the
auditclient program transmits the audit entries buffered to disk to the server. On the SLS
side the SNTT is integrated with the sald application. The sald application is the main
program for executing on the server. A collector component in the sald software is
responsible for the interface to the SNTT module. On the SLS the SNTT software is further
responsible for providing additional hashing and encryption services.

The SLS is the log server for the SAL application. The SLS records audit data to a storage
media for later processing. The SLS establishes the sald application as a server application and
waits for connections to be established by SIC. The SLS is a multi-threaded application. As
new SIC(s) connect to the server a new thread is created to handle the communications with the
server. The server provides a number of new features such as: audit log size thresholds based
rotating, email, or syslog capable alerting, dynamic file system support and dynamic server
configuration. As audit events are received by the server, server Meta-Data is attached to the
event. This Meta-Data provides chain of custody markers, time of receipt indications and based
on configuration message checksum values. Once received and processed, audit events are
stored to disk in such a way as to prevent the data from later being modified or altered.
Additionally as files are closed a certification hash is produced to provide external file
authentication. The SLS is also responsible for continuously verifying the integrity of the
previously recorded data. This is accomplished by the archiver component of the SLS. On a

SAL Software Design Document 1.0 - 7 -

configurable time interval the archiver is requested to verify that all the previously recorded
audit events pass verification. If there is an indication that a file has been tampered with alerts
are raised to inform the appropriate responsible person. While one of the goals of the SLS is to
not allow any modification to previously logged data we are not naïve enough to believe that it
can’t be. Therefore it is a goal of the SLS to be able to identify when data has been modified or
altered and if possible limit the potential corruption to the smallest subset of data possible.
Additionally the SLS provides a java-based tool that, assuming a properly authenticated user,
will parse audit event logs and produce a clear text (human-readable) data representation. This
tool is currently the only mechanism available for a user to get access to the audit data. It
provides the ability to search through the audit event logs for specific SIC and then through the
specific logs for time intervals. Additionally, a limited filtering capability will be provided. This
filtering capability will evolve to allow users of the tools to eventually request a specific set of
events to trigger alarms.

4.1 Use of Encryption with SAL
Data privacy, integrity, and authentication are the primary reasons SAL uses data encryption.
Date privacy is primarily needed while data is in transit over the network. For this reason all
application-level network communication is encrypted. Data integrity is also maintained by the
use of encryption algorithms. Here it is used by the server in the generation of a hash for each
file that is written. Additional at specified intervals all the audit files stored on the server are
rechecked to determine if any modification have occurred. Lastly client authentication is assured
by the use of encryption. For the data encryption portion of the SAL program our development
team selected the OpenSSL libraries. These libraries have become the de facto standard in open
source software. They are complete, well tested and have a thriving development community
which maintains the software on multiple platforms. Additionally, the OpenSSL libraries are
GPL therefore they are free for our purposes.

4.2 Trade Offs
Client Kernel Patch vs. Kernel Module: We had a lively discussion on this topic. Several
of the developers wanted to develop a SAL kernel module for the clients. The module approach
is very similar to the approach taken by several other auditing applications. There were also
many good reasons for the module approach (no kernel code changes, dynamic installation, no
need to rebuild the kernel, more supportability for module changes). But while these good
reasons do exist, they were also some of the downfalls for use of a plug-in module. Chiefly the
module approach allows for the possibility of the module’s removal, thus turning off auditing.
We determined that type of vulnerability would make our system not meet our primary goal of
C2/CC compliance. We did realize that we could minimize the chances of it being removed, and
that only root could remove it but any ability to turn off monitoring was something we wanted to
avoid if at all possible. We also considered the performance difference between a plug-in
module and static kernel code and determine that static kernel code was going to execute slightly
faster because of where the code is being executed (ultimately there are less instructions involved
in static kernel code than in a plug-in module. Additionally there was talk about the monitoring
capability of a plug-in module and if it could allow the same system call resolution that static
kernel code could. As the Linux kernel 2.5 hits the street we will be looking into the use of the
Linux Security Module (LSM) however as of this document we have not begun that work.

SAL Software Design Document 1.0 - 8 -

Log Server on Different Computer: When the SAL program was first discussed we talk
about the possibility of allowing the server to run on the same computer that generated the audit
events. We figured this implementation would be great for small installations and this seemed
highly desirable. If we would allow the SAL server to co-exist with the client software that
would be great for testing, great for demos and great for installations with limited system
resources. However, it would not be great for our security requirements. We talked at length
about the possibility of doing this, but ultimately the question we came up against was “Is this
approach really any different then the current logging approach?” We had to answer NO. Most
logging systems of today follow the design of allowing logging to be performed on the system
that is actually generating the data. According to our interpretation of the C2/CC requirements
and discussions with our forensic team and lawyers we determined that the log data “MUST” be
removed from the system to ensure any integrity of the data. The need to ensure this integrity
over-rides the resource issues that this approach adds for its use. We are still discussing the
possibility of allowing the server to execute on the same computer as the client as a possible
configuration however this will be worked on as time available basis.

Use of Little Files on client: The use of the little files to buffer data on the client still
generates a lot of discussion within our team. The little files are used to buffer audit data from
the kernel prior to transit to the server. We use the little files to quickly (at the highest priority
that Linux allows) write the data received from the kernel to the file system. When the file is
close and a second is opened, the consuming program auditclient then reads the data from
the closed file and sends it to the server. Then auditclient, then is responsible for
removing it from the system. In a steady state condition, the files will practically never go to the
disk, staying instead in system buffers. If the communication with the server fails (for whatever
reason) this approach will automatically spool the files to disk. We have demonstrated that the
load on the system can be nearly 100% before the kernel fails to write all of its system calls.
After examining other approaches and running benchmarks we determined that we have a valid
design. Other approaches (memory, pipes, etc) quickly consumed the buffering resources. We
believe that eliminating the little files will cause the integrity of the system to be diminished and
that this is unacceptable.

Multi-Threaded Server Application: When we were considering the design of the server
we talked about both multi-threaded and multi-process server application approaches. We spent
some time coming up with tradeoffs for both approaches because they both had merit. We saw
the benefits of the multi-process approach being fault tolerance as in case one of a connection
causing the connection application to crash. Additionally a multi-process approach can provide
for a better load balancing capability. The problem with the multi-process approach is generally
due to its implementation. For multi-process implementation process synchronization and Inter-
Process Communication (IPC) issues can often prove more trouble then they are worth. We saw
a multi-threaded application being basically the reverse of the above. Multi-threaded
applications allow threads to share a common address space so inter-thread communications is
very easy, and synchronization between threads is handled very easily with mutexes. This
approach also had some pitfalls. The chief pitfall is, if any of the connections with clients cause
a crash, the entire application crashes. At this stage of the SAL program it was determine that
development time was at a premium so the benefits of easier development outweighed the

SAL Software Design Document 1.0 - 9 -

pitfalls associated with multi-threaded development effort, so the multi-threaded approach was
taken.

XML Server Configuration File: XML was chosen as the configuration file format because
of its supportability. Virtually every language we considered using (C/C++, Java) and many of
the tools we planned on developing with (Perl, PHP) had XML libraries. The main application
for the server uses the Xerces-C++ parser. There are versions of this parser available for Java, as
well as Perl and PHP.

4.3 High Level Design of the Components

4.3.1 Instrumented Client

An Instrumented Client is any computer with an interface to a SAL server. Currently only one
implementation of this interface is available. That implementation exists on computers running a
specially modified Linux operating system/kernel. We currently support the RedHat 7.3 Linux
distribution. (A port to the RedHat 8.0 Linux distribution is underway.) That SAL Kernel is
available as a patch to the standard RedHat Linux kernel. The functionality provided by the
patch is system call monitoring. The actual system calls monitored depend on how the kernel is
configured, which is defined at kernel compile time. A Perl script (sal-conf.pl) is responsible for
modifying the kernel based on arguments provided by the kernel builder (HIGH, MEDIUM,
LOW). This setting defines the amount of auditing that is performed. (See below for a list of
monitored system calls based on the selected option.) Once the kernel is instrumented and
rebuilt the system must be rebooted for it to take effect. Once the instrumented kernel is
executing all monitored system call are stored into a ping-pong buffer until it’s full in which case
the monitor stops. During normal operations the buffer will not be allowed to fill so auditing
will not be stopped. The ping-pong buffer is emptied by the auditd application’s call to the
audit system call which copies the audit data from the buffers into the applications local
memory.

Along with the patched kernel two additional application programs are included. These
programs are responsible for spooling data from the kernel and transmitting it to the server. The
program responsible for spooling data from the kernel is auditd. This program requires a
temporary file directory which it uses to write spooled audit files (“little files”) too. Auditd
creates files in the temporary directory as data is processed from the kernel via a system call,
called audit. When a size threshold (configurable via compilation) is exceeded, the auditd
program closes it and creates another file for the next block of kernel audit data. The format for
audit data file name is [suffix].##, where suffix defaults to tmp and ## is a one up counter. See
Table 1 for a list of the data that is gathered from the SAL Kernel. The auditd process
continues this execution cycle until it is stopped by external events.

The auditclient application is responsible for establishing a secure connection with the
server and then transmitting the spooled audit data files over the network to the SAL server.
Upon application startup the auditclient application attempts to establish a secure
connection with the SAL server using a previously provided encryption key. Currently the

SAL Software Design Document 1.0 - 10 -

auditclient application will wait for the server to become available before any processing
will commence. Once the connection is established the application will send all backlogged data
(if any) and then begin a steady state processing. Steady state process is the process where
auditd creates a little file called “tmp.2323”, auditclient transmits “tmp.2322” over to the server
for storage and wait for the creation of “tmp.2324” before transmitting “tmp.2323” to the server.
While the network connection is available and the server is able to keep up with all the possible
clients that are connected the process of waiting for the next file continues. However due to the
nature of the SAL application this may not always be the case (server falls behind, network
connection is lost, what have you). The spooling of the data to disk by auditd will handle the
case where the server falls behind or there is a momentary connection problem with the server.
However broken connections with the server will cause the auditclient program to re-
establish a secure connection. For this the auditclient application continually verifies that
the connection is valid. When these types of interruption occurs the auditclient application
attempts to re-establish a secure connection with the server in an attempt to regain a steady state.

For the convenience of users of the system a shell script is included in the tarball. This script
audit.sh is responsible for starting the auditd and auditclient application in a clean state.
Special care must be taken when using this script. It removes the directory where the kernel
audit files are stored prior to recreating it. If there are any files that have not been sent over to
the server in that directory they will be lost.

Information gathered by the Instrumented Client
Name Comments
serial A one-up counter representing the sequence number for the system call.
ts_sec Timestamp: when the syscall occurred represented by the number of seconds

since January 1, 1970.
ts_micro Timestamp (complements ts_sec): the number of microseconds between each

second.
syscall A numerical representation of the system call. These numbers can be linked to

a system call name in arch/i386/kernel/entry.S.
status The return status of the system call.
pid The Process ID: defined in include/linux/types.h. This information is

obtained from the Linux kernel’s current task structure (task_struct) defined in
include/linux/sched.h.

uid The Real User ID: defined in include/linux/types.h. This information is
obtained from the Linux kernel’s current task structure (task_struct) defined in
include/linux/sched.h.

euid The Effective User ID: defined in include/linux/types.h. This information is
obtained from the Linux kernel’s current task structure (task_struct) defined in
include/linux/sched.h.

device A numerical representation of the tty. This information is obtained from the
Linux kernel’s current task structure (task_struct) defined in
include/linux/sched.h. If no tty
is defined the tty_struct of the current task structure is null.

comm The name of the program that executed the process that called the system call.
This information is obtained from the Linux kernel’s current task structure

SAL Software Design Document 1.0 - 11 -

(task_struct) defined in include/linux/sched.h.
Table 1.

Instrumented Client Application Programs and Scripts:
Audit.sh: This script removes the temporary directory (TMP_DIR) if it exists. It then calls the
audit daemon (auditd) as a background process and the audit client as a foreground process. It
calls both the daemon and client using the temporary directory. To kill the audit client, press
Ctrl-C. This only kills the client; however, to kill the audit daemon run, 'killall -s9 auditd'.
Killing the auditd daemon will cause the kernel to eventually suspend auditing as the collection
buffers cannot be emptied. To unsuspend use '-r'. Below is the audit script included with the
tarball.

./audit.sh

Auditd: The daemon gets the audit data out of the kernel. It then writes the data from the
kernel to little files that act as buffers.

./auditd [-b <base>]
 [-c <number>]
 [-d <directory>]
 [-r]

OPTIONS
-b base use 'base' as the file base of the temporary files, the
 default is 'tmp'
-d directory the directory where the daemon writes the temporary files,
 the default directory is 'tmp'
-c number sets the number of collection buffers that are written to a
 temporary file, the default is 10
-r resets the kernel auditing if suspended; this option clears the
 collection buffers by dropping the data and restarts the auditing

Auditclient: The audit client reads the tiny files left by the audit daemon and sends the data
over the network.

./auditclient [-a <IP address>]
 [-b <base>]
 [-c <directory>]
 [-d <directory>]
 [-e]
 [-n <number>]
 [-k]
 [-l <file>]
 [-p <port>]

SAL Software Design Document 1.0 - 12 -

 [-q]
 [-v]

OPTIONS
-a IP address the IP address of the server that is collecting the data;
 the IP address to which the client sends the data
-b base Use 'base' as the file base of the temporary files, the
 default is 'tmp'
-c directory the directory from which the client reads the its certificate,
 the default directory is '/CA'
-d directory the directory from which the client reads the temporary files,
 the default directory is 'tmp'
-e starts with the earliest file in the temporary directory; this
 option overrides the -n option, so if '-n 10 -e' is given and the
 earliest file found was 2, it would start at 2
-k keep the temporary files, do not delete
-l file logs to a file the last temporary file the client opened
 for reading
-n X starts processing at the specified temporary file X, the
 default is 0
-p port the port the server is listening on (default 5000)
-q finish up; read all the available files and then quit, do
 not wait for the last one. this option starts with the
 earliest file (just like -e)
-v verbose

4.3.2 SAL Log Server

The SAL Log Server is responsible for the permanent storage and protection of SAL audit events
generated by clients. It performs these tasks by starting the sald application at system startup
run level 2 or 3. The SAL server can be run headless if properly configured. The sald
application is a single, multi-threaded application that has one thread handle for each client that
connects to the server as well as a thread to support its email and archiving functions. Once
started the sald program processes the sald_conf.xml file and establishes a number of signal
handlers. The sald_conf.xml file is responsible for configuring the sald application (see
detailed description of the fields below). Based on the configuration the server establishes
connections to the specified networks. The server can support more then one network at a time.
Also based on its configuration the server will alert the administrator the application is executing
properly. The completion of the server initialization allows the server to enter into its two main
processing states, the connection state and the archive monitoring states. These states have their
own processing capabilities which will be outline below. Along with these two major execution
states a number of utility threads are started to help support the server’s operations. These
include a main controller thread, a debug output thread, and an email processing thread.

SAL Software Design Document 1.0 - 13 -

The main controller thread handled by the controller class is responsible for the sald
application startup; it also handles the creation of a configuration file parsing class and the
establishment of the signal handlers. While the SAL server requires a configuration file some of
the options can be over-ridden by the command line (See Server Command Line Options).

The connection monitoring capability is handled by the collector class. It is responsible for
establishing and support network connections, receiving client connections, verifying client
access, creating a thread to receive the audit data, and creating a client session for processing the
client’s audit data. When a client initially connects to the server, a verification process is run. It
is already known that the client has the appropriate SSL key, so its Internet Protocol (IP) address,
its Media Access Control (MAC) address are also checked. The sessionManager class is
responsible for this verification. The verification is run against what is stored in the server’s
configuration file. If the client’s connection is accepted a session is created to support the
client and returned to the collector. The server, currently, supports two types of sessions, a
blob session and text sessions. These sessions support the different data formats defined in
appendix B. Initially the session creates an auditDataFacility (ADF) that is responsible for
handling the rotation of the audit files. The ADF then waits to process audit data. After a block
of audit data has been received and verified by the session an auditEntry class is created,
propagated, and passed off to the ADF for storage. The act of storing the auditEntry is
physically performed by the auditFile class. The auditFile class is created by the ADF to
handle the recording of the data to a storage media. As data is written to disk the ADF determines
if configured thresholds have been exceeded and if so rotates the log file. Once a log file gets
rotated the certificationDB class is informed and takes ownership of the file and a new
auditFile is created to process the next auditEntry class that is received.

Archive monitoring is handled by the archiver class. It is responsible for maintaining the
integrity of the stored audit files. It performs this function by continually verifying the status of
the archives. If stored audit files are tampered with alerts are sent to the administrator indicating
the problem. The revalidation of the archive is performed every 10 minutes (the default value
may be changed via the configuration file). The sald application starts an archive monitor
thread that is responsible for querying the certificationDB for it status. The status of the
certificationDB is based on computed hash functions. When the certificaitonDB takes
ownership of an audit log file a SHA hash is computed and stored in the data based. When a
request to validate the data base is processed all the hash values are recomputed for the audit log
files with entries in the data base. If there are discrepancies with the hash values or there are
missing or modified file system stat inconsistencies, an alert is sent to the administrator
(configuration dependent).

The server supports additional threads to handle debug and emailing. These threads are created
by the controller class to provide additional functionality. The debug class allows the sald
program to have a method of dynamically dumping information helpful to the persons working
with the application. It can be dynamically changed without stopping the server by modifing the
proper value in the configuration file and sending the SIGHUP signal to the sald application.
A script file ./newconfig.sh has been included to make that task simpler. There is also a script
file named ./salreport.sh that will produce a report of the running application. This report

SAL Software Design Document 1.0 - 14 -

provides information about the uptime the individual connections as well as the status of the
certification data base. The output for this report is specified in the sal_config.xml file.

To make the configuration of the SAL server easier a Webmin module has been developed.
This module allows the administrator the ability to configure all elements of the server as well as
generate encryption key for both client and the server.

4.3.3 SAL Java GUI

The SAL Java GUI is a Java-based application designed for displaying the contents of the audit
files stored by the SAL Server. The GUI displays data for each client that has connected to the
server and sent audit data. The GUI reads these audit files and displays either a text summary of
the data, a pie chart summary of the data, or a selected number of the system calls stored in the
selected file. Access to these audit files is defined in either the config.app file, or on the
Preferences tab in the GUI, by setting the Log Path field to the location where the server
stores it’s audit files.

Before starting the GUI, the gui_config.pl script must be run to generate a list of system call
names in the syscall_config file. These system call names are read by the GUI on startup and
used to match the system call number stored in the server’s audit files with its appropriate name.
Since the entries in the syscall_config file are generated by examining the appropriate entry.S file
on the server’s machine, there could be an incorrect matching of system call numbers to their
names if one of the client systems is running a version of the Linux kernel that does not match
the one scanned by the gui_config.pl script.

The Java GUI also uses a native method, auditViewer, which does the actual reading of the
server’s audit files. The auditViewer native method is defined in the C module
auditviewer.c, which returns a string containing the data requested by the Java GUI for
displaying. The Java GUI can request either a summary of the audit file’s data, or a specified
number of the system call data stored in the audit file. In order for the native method to work
correctly, the user’s LD_LIBRARY_PATH must contain the path to the dynamic loadable library,
libviewer.so, which is located in the root directory of the Java GUI.

The GUI consists of a Server module and multiple client modules. The server module contains a
client module navigation tree that is used for switching between client modules. New client
modules are added to this tree by a thread that is spawned by the server module when the user
requests a search for new clients. The client modules contain a Summary tab and a Log File
tab. The Summary tab allows the user to select a file for that client from a drop-down menu,
and, after pressing the Refresh Summary button, displays the total number of system calls
stored in the file and a list of all the system call names in the file with the number of times that
call was made. For a pie chart showing the percentage of system call usage in that specific file,
the user can press the View Chart button. The Log File tab also allows the user to select

SAL Software Design Document 1.0 - 15 -

which file to view from a drop-down menu, and also allows the user to select how many system
calls to view at a time. Once those choices have been made, and the Refresh Log button has
been pressed, the Log File tab will display a list of all the system call data collected by the
client, and stored in the audit file. A list of the data collected by the client, and an explanation of
this data can be found in Table 1.

The Java GUI does not automatically detect the addition of new clients to the server, so the user
will have to tell the GUI when to re-check the server’s logging directory for more clients. This
can be done by selecting the Clients option from the Update menu. This option will re-scan
the log directory, and automatically add a new module to the GUI for any new clients detected
by the scan. Also, switching between Client modules will automatically refresh the list of files
available in the drop-down menus for each client.

gui_config.pl

This script file is used to create a listing of all the system call names available for a specified
client, and it places this list in a file called syscall_config.

Secure Audit for Linux (SAL) Java GUI: This application reads the audit files stored by the
server and displays the requested information from them.

./go

4.3.4 SAL Audit Viewer

The C-based SAL Audit Viewer is provided for those users that do not wish to install Java on
their systems, but still want to examine the contents of the server’s log files. The Audit Viewer
is passed a number of options, including the name of the file to be read as an option and the path
to the directory where this file is stored. It can also be passed options to print out a summary of
the file’s data, print out the entire contents of the file, or print out only part of the contents of the
file.

When reading one of the server’s files, the Audit Viewer first checks the file for embedded XML
tags that the server places around the client’s audit data. The viewer skips over those tags, and
then reads in two packets of data, each the size of the Kernel Audit Event structure, as seen in
Appendix B. It converts this data from network-byte-order to host-byte-order, checks the serial
number stored in each to make sure that they are valid system calls only one number apart, and
then begins to read the file until the next set of XML tags is encountered, at which point the
process repeats. This continues until the end of the file, or until corrupted data is encountered. If

SAL Software Design Document 1.0 - 16 -

invalid or corrupted data is encountered, the viewer will attempt to find a place where valid data
can be read, but this will only happen for a finite period of time, and will eventually exit with an
error message if no valid data is found within the allowed limits.

While reading the system call data, the viewer keeps track of the total number of system calls
encountered, as well as a running total of the number of times each system call is in the file. If
the user requests a summary of the file, the viewer will print out this total, and a table of system
call numbers, with the number of times each system call appeared in the file. If the user passes
in the verbose option, the viewer will print out the full contents of the Kernel Audit Event
structure for each system call encountered in the file. The user can limit the number of system
call’s displayed by passing a value to the –j option. The number passed to the –j option will
tell the viewer to skip that number of system calls, and print out the rest. So if the user wants to
see 100 system calls, and the total number in the file is 1600, the user should pass –j 1500 to
the viewer. The user can request a summary and a listing of all system calls at the same time if
they so desire.

./auditviewer [-l <directory>]
 [-s]
 [-v]
 <filename>

OPTIONS
-l directory the directory where the server logs are found
-s displays a summary
-v verbose
-j num_skip the number of system calls to skip when verbose

Sal-wbm is a Webmin module for the SAL Server which is used to edit the configuration file as
well as create server and client keys. sal-wbm’s web interface simplifies SAL Server
configuration through six different sections/categories; General Options, Log Settings, Networks,
Clients, Edit Configuration and Manage Keys.

General Options: Basic options may be set such as location of the configuration file. Also the
high level variables in the configuration file may be changed.

Log Settings: Options for the SAL server logging system are defined; these include
Thresholds, Client information, port, etc…

Networks: Interfaces for the server can be dynamically added, deleted, and changed as the
Network information changes.

SAL Software Design Document 1.0 - 17 -

Clients: Each client requires one entry which defines the clients thresholds, alerts, Mac and IP
addresses, etc…

Edit Configuration: Allows for manual editing of the configuration file.

Manage Keys: Server and Client keys are generated and stored on the servers file system. Server
and client keys may be deleted and rebuild, client keys may also be downloaded.

Newconfig.sh
This script file is used to send the sald application a HUP signal, which causes sald to
process the configuration again while it is executing.

Salreport.sh
This script file is used to send the sald application a USR1 signal, which causes sald to dump
a report to the report file.

Secure Audit for Linux (SAL) Server: Executing as a daemon process this application waits for
data from clients and stores it to disk.

./sald [-d debug setting]
 [-l debug value 0...20]
 [-c config file]
 [-p]
 [-k key directory]
 [-f]
 [-v]

OPTIONS
-d debug file specifies the name of the file to dump debug to.
-l specified the debug level.
-c configfile provides the config file that the SAL server will use.
-v print the version number of the application.
-p parse only flag (Not currently implemented)
-k key dir provides directory where keys are located.
-f executes sald application in the foreground. [Defaults to background]

(SIGHUP) Re-process the configuration file.
(SIGUSR1) Print out a SAL Server Report.

4.3.5 Configuration File Example

<Configuration>

SAL Software Design Document 1.0 - 18 -

 <HashType>sha</HashType>
 <IntegrityVerificationInterval>15</IntegrityVerificationInterval>
 <BaseStoragePath>/usr/local/sal/clients/storage</BaseStoragePath>
 <DebugLevel>10</DebugLevel>
 <ReportFileName>/usr/local/sal/clients/sal_report</ReportFileName>
 <HashExecutable>/usr/bin/openssl</HashExecutable>
 <ServerKeysDir>/usr/local/sal/keys</ServerKeysDir>
 <DebugFile>/usr/local/sal/tmp/sald.log</DebugFile>
 <CertificationDBLocation>/usr/local/sal/cdb</CertificationDBLocation>
 <Networks>
 <NetworkDefinition1>
 <NetworkIP>198.253.113.243</NetworkIP>
 <NetworkName>eth0</NetworkName>
 <Port>5000</Port>
 </NetworkDefinition1>
 <NumberOf>1</NumberOf>
 </Networks>
 <SALClients>
 <NumberOf>1</NumberOf>
 <System1>
 <ThresholdAlertName>postmaster@localhost</ThresholdAlertName>
 <ClientStorage>/usr/local/sal/clients/storage/</ClientStorage>
 <LogRotateFreq>MID</LogRotateFreq>
 <Enabled>Yes</Enabled>
 <ThresholdAlert>EMAIL</ThresholdAlert>
 <ThresholdMid>40</ThresholdMid>
 <ThresholdHigh>95%</ThresholdHigh>
 <Type>FORMAT1</Type>
 <ClientMAC>"Not Provided"</ClientMAC>
 <StorageType>FLAT</StorageType>
 <Debug>0</Debug>
 <IP>198.253.113.55</IP>
 <ClientKeys>/home/sal/keys/peo_101.keys</ClientKeys>
 <ThresholdLow>20</ThresholdLow>
 <ThresholdMax>DISK_LIMIT</ThresholdMax>
 </System1>
 </SALClients>
</Configuration>

Meaning of Each Field.

<Configuration>…</Configuration>

Pair used to start the configuration of SAL Server

<HashType>…</HashType>
 Type of hash function to use (passed as argument to HashExecutable)
 md5
 sha (default)

<HashExecutable>…</HashExecutable>
 Name of the executable program used to compute hash values for audit log files

(openssl is default).

SAL Software Design Document 1.0 - 19 -

<IntegrityVerificationInterval>…</IntegrityVerificationInterval>
 Time (in minutes) between execution of Integrity verification.

<ServerKeysDir>…</ ServerKeysDir>

Pair used to identify where the SAL Server Keys are located

<DebugLevel>…</ DebugLevel>
The higher the number the more data dump to the debug file.
Range (0..20)

<DebugFile>…</ DebugFile>
File name of the debug file.

<BaseStoragePath>…</BaseStoragePath>
 Default storage location if none provided.

<CertificationDBLocation>… </CertificationDBLocation>
 Location of certification Database. Default “/usr/local/sal/cdb”

<Networks>…</ Networks>

Pair used to identify where networks that SAL will be listening on are defined.

< NumberOf>…</ NumberOf>
Defines the number of networks SAL will be listening on. (Only the first <NumberOf>
are parsed in this file.

<NetworkDefinition#>…</NetworkDefinition#>
Defines the # network that the SAL server will be listening on.

 <Port>…</Port>
Defines the Port that the network will use to start communicating.

<NetworkName>… </NetworkName>
Defines the standard name given for the interface.

<NetworkIP>…</NetworkIP>
Defines the IP address of the Network. Currently only Static address are possible.

<BaseStoragePath>…</BaseStoragePath>
Base location for data to be stored on filesystem (Either local or nfs mounted)

 <SALClients>…</SALClients>
Pair used to identify where client definition begins.

 <NumberOf>1</NumberOf>
Pair used to identify the number of client. (only this number of clients will be parsed in
file configuration file.

<System#>…</System#>
Pair used to identify client number #

SAL Software Design Document 1.0 - 20 -

<IP>…</IP>
IP address of the client. (Only support static IP addresses, for security purposes)

 <ClientMAC>…</ClientMAC>
MAC address of the client. If not available an alert will be sent but standard
processing will still occur.

<Type>…</Type>
Type of messages to expect “FORMAT1” or “FORMAT2”

<Enabled>…</Enabled>
Indicates if Client is enabled for standard processing. “YES” in all forms is
accepted all others are rejected.

<StorageType>…</StorageType>
Defines the type of storage that is used for final data to disk “PEO” for
encryption, “STANDARD” for default. Each <TYPE> will have its own default.

<ClientKeys>…</ClientKeys>
Location of Client portion of crypto. Part of the SSL processing.

<ClientStorage>…</ClientStorage>
Location to store Client Data (will over-ride <BaseStoragePath> processing)

 <Thresholds>…</Thresholds>
Identifies File threshold to alert on.
<ALERT>…</ALERT>

Identifies how to alert on error. “NONE”, “SYSLOG”, ”EMAIL”,
”CONSOLE” are acceptable answers.

<MAX>DISK_LIMIT</MAX>
<High>95%</High>
<Mid>1000</Mid>
<Low>100</Low>

 </Thresholds>
<Debug>0</Debug>

SAL Software Design Document 1.0 - 21 -

5.0 Detail design of Components
The detail design of the software is available in the code. The doxygen program is used to
generate HTML documentation form the source.

6.0 Glossary

ADF AuditDataFacility
C2 Rainbow Series - Orange Book (level C2)
CC Common Criteria
IP Internet Protocol
IPC Inter Process Communication
LSM Linux Security Module
MAC Media Access Control
OS Operating System
SIC SAL Instrumented Client
SL SAL Log Server
SNTT Secure Network Transfer Tunnel
SSL Secure Socket Layer

SAL Software Design Document 1.0 - 22 -

Appendix A – Requirements traceability/System Call List
The following system calls are standard in the Linux operating System as of the 2.4.2-2 release
of the kernel. The ones being tracked by SAL include a reference to the appropriate recording
requirement from section 2.1.2 of the Requirements Document.

System Call Description
Requiremen
t Reference

Access Determines whether a file can be accessed. REC030

Acct Switches process accounting on or off. REC020

Adjtimex Tunes the kernel clock. N/A

Alarm Sets an alarm clock for delivery of a signal. N/A

Bdflush Kernel daemon to flush dirty buffers back to disk. REC110

Brk Changes the data segment size. REC140

Capget Get process capabilities. REC120

Capset Set process capabilities. REC140

Chdir Chdir changes the current directory to that specified in path. REC130

Chmod Changes file access permissions. REC040

Chown Changes the user and/or group ownership of each given file. REC040

chown16 Changes the user and/or group ownership of each given file. REC040

Chroot Run command or interactive shell with special root directory. REC020/REC130

Clone Creates a new process like fork does. REC020

Close Closes a file descriptor, so that it no longer refers to any file and may be reused. REC030

Creat Open and possibly create a file or device. REC030/REC090

create_module Create a loadable module entry. REC110

delete_module Delete a loadable module entry. REC110

Dup Duplicates a file descriptor. REC030

Dup2 Duplicates a file descriptor. REC030

Execve Executes the program pointed to by filename. REC020

Exit Exit a running process. REC020

Fchdir Changes the current directory to that specified in path. REC130

Fchmod Changes the mode of the file given by path or referenced by fildes. REC030

Fchown Changes the owner of the file specified by path or by fd. REC040

fchown16 Changes the owner of the file specified by path or by fd. REC040

Fcntl Performs one of various miscellaneous operations on fd. REC030

Fcntl64 Performs one of various miscellaneous operations on fd. REC030

Fdatasync Flushes all data buffers of a file to disk (before the system call returns). REC030

Flock Apply or remove an advisory lock on an open file. The file is specified by fd. REC030

SAL Software Design Document 1.0 - 23 -

System Call Description
Requiremen
t Reference

Fork Creates a child process that differs from the parent process only in its PID and
PPID, and in the fact that resource utilizations are set to 0.

REC010/REC020

Fstat Gets file status. REC030/REC120

Fstat64 Gets file status. REC030/REC120

Fstatfs Gets file system statistics. REC030/REC120

Fsync Synchronize a file's complete in-core state with that on disk. REC030

Ftruncate Truncates a file to a specified length. REC030

ftruncate64 Truncates a file to a specified length. REC030

get_kernel_syms Retrieves exported kernel and module symbols. REC110

Getcwd Get current working directory. REC130

Getdents Gets directory entries. REC130

getdents64 Gets directory entries. REC130

Getegid Gets group identity. REC120

getegid16 Gets group identity. REC120

Geteuid Returns the real user ID of the current process. REC120

geteuid16 Returns the real user ID of the current process. REC120

Getgid Returns the real group ID of the current process. REC120

getgid16 Returns the real group ID of the current process. REC120

Getgroups Get list of supplementary group Ids. REC120

Getgroups16 Get list of supplementary group Ids. REC120

Getitimer Gets value of an interval timer. REC120

Getpgid Get process group ID of the process specified by pid to pgid. REC120

getpgrp Get process group. REC120

getpid Get process identification. REC120

getppid Gets process identification. REC120

getpriority Gets program scheduling priority. REC120

getresgid Gets real, effective and saved group ID. REC120

getresgid16 Gets real, effective and saved group ID. REC120

getresuid Gets real, effective and saved user ID. REC120

getresuid16 Gets real, effective and saved user ID. REC120

getrlimit Gets resource limits and usage. REC120

getrusage Gets resource limits and usage. REC120

getsid Gets session ID. REC120

gettimeofday Gets time. REC120

getuid Returns the real user ID of the current process. REC120

getuid16 Returns the real user ID of the current process. REC120

init_module Initializes a loadable module entry. REC110

SAL Software Design Document 1.0 - 24 -

System Call Description
Requiremen
t Reference

Ioctl Control device. REC090

ioperm Sets port input/output permissions. REC040

Iopl Changes I/O privilege level. REC040

Ipc System V IPC system calls. N/A

Kill Terminates a process. REC020

lchown Changes ownership of a file. REC040

lchown16 REC040

link Makes a new name for a file. REC030

llseek Reposition read/write file offset. REC030

lseek Repositions read/write file offset. REC030

lstat Gets file status. REC120

lstat64 Gets file status. REC120

madvise N/A

mincore N/A

mkdir Makes directories. REC130

mknod Makes block or character special files. REC030

mlock Disables paging for some parts of memory. REC080/REC140

mlockall Disables paging for calling process. REC080/REC140

mmap Map or unmap files or devices into memory. REC080

mmap2 Map or unmap files or devices into memory. REC080

modify_ldt Gets or sets ldt. N/A

mount Mounts a file system. REC030/REC130

mprotect Controls allowable accesses to a region of memory. REC080

mremap Re-map a virtual memory address. REC080

msync Synchronizes a file with a memory map. REC030/REC080

munlock Reenables paging for some parts of memory. REC080/REC140

munlockall Reenables paging for calling process. REC080/REC140

munmap Map or unmap files or devices into memory. REC080

nanosleep Pauses execution for a specified time. N/A

newfstat N/A

newlstat N/A

newstat N/A

newuname N/A

nfsservctl Syscall interface to kernel nfs daemon. N/A

nice Runs a program with a modified scheduling priority. REC140

Old_getrlimit Obsolete system call. N/A

SAL Software Design Document 1.0 - 25 -

System Call Description
Requiremen
t Reference

oldumount Obsolete system call.q N/A

olduname Obsolete system call. N/A

open Opens and possibly creates a file or device. REC030

pause Waits for signal. N/A

personality Sets the process execution domain. REC140

pipe Creates a pipe. REC060

pivot_root Changes the root file system. REC030/REC140

poll Waits for some event on a file descriptor. REC070

prctl Operations on a process. N/A

pread Reads from or writes to a file descriptor at a given offset. REC030

ptrace Process trace. REC120

pwrite N/A

query_module Query the kernel for various bits pertaining to modules. REC120

quotactl Manipulates disk quotas. REC140

read Read from a file descriptor. REC030/REC070

readdir Reads directory entry. REC130

readlink Prints contents of symbolic link. REC030

readv Reads or writes a vector. N/A

reboot Reboots the system. REC140

rename Renames files. REC030

rmdir Removes an empty directories. REC140

rt_sigaction See sigaction. N/A

rt_sigpending See sigpending. N/A

rt_sigprocmask See sigprocmask. N/A

rt_sigqueueinfo N/A

rt_sigreturn See sigreturn N/A

rt_sigsuspend See sigsuspend N/A

rt_sigtimedwait N/A

sched_get_priority_max Gets static priority range. REC120

sched_get_priority_min Gets static priority range. REC120

sched_getparam Gets scheduling parameters. REC120

sched_getscheduler Gets scheduling algorithm/parameters. REC120

sched_rr_get_interval Gets the SCHED_RR interval for the named process. REC120

sched_setparam Sets scheduling parameters. REC140

sched_setscheduler Sets scheduling algorithm/parameters. REC140

sched_yield Yields the processor. N/A

SAL Software Design Document 1.0 - 26 -

System Call Description
Requiremen
t Reference

select Synchronous I/O multiplexing. N/A

sendfile Transfers data between file descriptors REC060/REC070

setdomainname Sets domain name. REC070

setfsgid Sets group identity used for file system checks. REC140

setfsgid16 Sets group identity used for file system checks. REC140

setfsuid Sets user identity used for file system checks. REC140

setfsuid16 Sets user identity used for file system checks. REC140

setgid Sets group identity. REC140

setgid16 Sets group identity. REC140

setgroups Sets list of supplementary group IDs. REC140

setgroups16 Sets list of supplementary group IDs. REC140

sethostname Sets host name. REC070

setitimer Sets value of an interval timer. N/A

setpgid Sets process group. REC040/REC140

setpriority Sets program scheduling priority. REC140

setregid Set real and/or effective group ID. REC040/REC140

setregid16 Set real and/or effective group ID. REC040/REC140

setresgid Set real, effective and saved user or group ID. REC040/REC140

setresgid16 Set real, effective and saved user or group ID. REC040/REC140

setresuid Sets real, effective and saved user or group ID. REC040/REC140

setresuid16 Sets real, effective and saved user or group ID. REC040/REC140

setreuid Sets real and/or effective user ID. REC040/REC140

setreuid16 Sets real and/or effective user ID. REC040/REC140

setrlimit Sets resource limits and usage. REC140

setsid Runs a program in a new session. REC020

settimeofday Sets time. REC140

setuid Sets user identity. REC140

setuid16 Sets user identity. REC140

sgetmask ANSI C signal handling. N/A

sigaction POSIX signal handling functions. N/A

sigaltstack Gets or sets alternate signal stack content. N/A

signal ANSI C signal handling. N/A

sigpending POSIX signal handling functions. N/A

sigprocmask POSIX signal handling functions. N/A

sigreturn Returns from signal handler and cleanups stack frame. N/A

sigsuspend POSIX signal handling functions. N/A

SAL Software Design Document 1.0 - 27 -

System Call Description
Requiremen
t Reference

socketcall Socket system calls. REC070

ssetmask ANSI C signal handling. N/A

stat Displays file or filesystem status. REC120

stat64 Displays file or filesystem status. REC120

statfs Gets file system statistics. REC120

stime Sets time. REC140

swapoff Disables devices and files for paging and swapping. REC140

swapon Enables devices and files for paging and swapping. REC140

symlink Make a new name for a file. REC030

sync Flushes filesystem buffers. REC030

sysctl Configures kernel parameters at runtime. REC140

sysfs Gets file system type information. REC120

sysinfo Returns information on overall system statistics. REC120

syslog Reads and/or clears kernel message ring buffer. REC110

time Times a simple command or gives resource usage. REC120

times Writes the time used by a current process and its children into a structure. N/A

truncate Truncates a file to a specified length. REC030

truncate64 Truncates a file to a specified length. REC030

umask Sets the mask for access rights to a file. REC030

umount Unmounts file systems. REC030

uname Prints system information. REC120

unlink Delete a name and possibly the file it refers to. REC030

uselib Selects shared library. N/A

ustat Gets file system statistics. REC120

utime Changes access and/or modification times of an inode. REC030/REC140

vfork Works like fork except for sharing of data segments between the processes. REC020

vhangup Virtually hangup the current tty. N/A

Vm86 Enter virtual 8086 mode. REC140

Vm86old See vm86 REC140

Wait4 Waits for process termination, BSD style. REC020

waitpid Waits for process termination. REC020

Write Sends a message to another user. N/A

writev Reads or write a vector. N/A

SAL Software Design Document 1.0 - 28 -

Appendix B – Secure Auditing for Linux (SAL): Audit Data
Structures
This document describes the content and structure of data transferred between software
components on the audit client and from audit clients to the audit server.

Client Data Structures
There are several software components on the client that exchange data. On systems with an
instrumented kernel, audited event data is collected by the instrumented kernel and passed to a
user-space audit daemon. This audit daemon passes the data on to the audit client process. The
audit client process collects data from the audit daemon, and potentially from other sources,
passing this data to the audit server. The data formats used on the client systems are described in
this section.

Kernel Audit Event
In an instrumented kernel each audited system call generates one audit event. The data for the
event is collected in a structure, which is described in Table 1. Multiple audit events are
collected into buffers, which are copied out to the audit daemon when the appropriate system call
is made. The number of events that may be copied out to the daemon can be adjusted by
modifying and compiling several constants in the kernel audit code. All data is converted to
network byte order in the kernel.

Table 1 – Kernel Audit Event Structure

Sequence Size Type Name Comments
1 32 bits unsigned int serial A one-up counter representing the

sequence number for the system call.
2 32 bits unsigned int ts_sec Timestamp: when the syscall occurred

represented by the number of seconds
since January 1, 1970.

3 32 bits unsigned int ts_micro Timestamp (complements ts_sec): the
number of microseconds between each
second.

4 32 bits unsigned int syscall A numerical representation of the
system call. These numbers can be
linked to a system call name in
arch/i386/kernel/entry.S.

5 32 bits unsigned int status The return status of the system call.
6 32 bits unsigned int pid The Process ID: defined in

include/linux/types.h. This
information is obtained from the Linux
kernel’s current task structure
(task_struct) defined in
include/linux/sched.h.

7 32 bits unsigned int uid The Real User ID: defined in
include/linux/types.h. This
information is obtained from the Linux

SAL Software Design Document 1.0 - 29 -

kernel’s current task structure
(task_struct) defined in
include/linux/sched.h.

8 32 bits unsigned int euid The Effective User ID: defined in
include/linux/types.h. This
information is obtained from the Linux
kernel’s current task structure
(task_struct) defined in
include/linux/sched.h.

9 32 bits unsigned int device A numerical representation of the tty.
This information is obtained from the
Linux kernel’s current task structure
(task_struct) defined in
include/linux/sched.h. If no tty
is defined the tty_struct of the current
task structure is null.

10 128 bits 16 unsigned
chars

comm The name of the program that executed
the process that called the system call.
This information is obtained from the
Linux kernel’s current task structure
(task_struct) defined in
include/linux/sched.h.

Audit Daemon Data Structure
The audit daemon collects a buffer of audit event data from the kernel through the audit system
call. Each call passes a memory pointer to the kernel which the kernel uses to copy out one
buffer of data. The audit daemon collects several of these buffers in memory, then writes them
to a temporary file for collection by the audit client process. These temporary audit files are the
concatenation of multiple kernel audit buffers. The audit daemon performs no data manipulation
or transformation on the buffers.
The daemon is unaware of the kernel audit event structure since it does not modify or interpret them. Each call to
the kernel returns the number of bytes copied out, which allows the daemon to concatenate the buffers without
padding. The number of buffers collected before the temporary file is created can be adjusted by changing a defined
variable and recompiling the audit daemon.

Table 2 – Audit Daemon Data Structure

Sequence Size Type Name Comments
1 variable const char n/a The first kernel audit buffer.
2 variable const char n/a The second kernel audit buffer.
… … … … …
n variable const char n/a The last kernel audit buffer.

Client – Server Data Structures
All data transferred between SAL’s Client and Server is encrypted. For the purpose of this
document the encryption method used will not be considered when looking at the data formats
(consider the encrypted link to be the wire the data travels over.) SAL supports multiple data

SAL Software Design Document 1.0 - 30 -

transfer formats. The primary formats are: (1) string based and (2) data blob based (a specific
example of this format is being used to transmit the kernel audit events from the SAL client).
String based formats provide the capability to transfer standard text messages to the server,
similar to the existing syslog program. This format can also be extended to support the
transmission of XML formatted strings. The concept of the data blob, which is heavily used in
data base design, allows for the transmission of arbitrary sized data to the SAL data repository.
The SAL Kernel Audit Event is a specific implementation of the blob data format. While one of
the primary roles of SAL is to monitor the Linux kernel, a client does not necessarily have to be
instrumented. In addition, it is envisioned that the data formats should be able to support a large
number of possible applications that require transmission to a secure data repository.

Format 1.0 Audit Package Structure
When a client computer is started and auditing is initiated an SSL connection is attempted with
the server. Assuming the connection is granted (which it may not be) the client will transmit
configuration/meta data to the server as the first message. All subsequent messages will be the
contents of a single temporary file created by the audit daemon. Initially, this initial message
consists only of a Client Version Message, which contains a format number and the size of each
audit event structure to follow. Future versions may include a copy of the /etc/passwd and
/etc/group files, and/or other client configuration data. All of the following messages consist
only of audit events. All data is sent in network byte order.

Table 3 - Client Version Message

Sequence Size Type Name Comments
1 32 bits unsigned int size The number of bytes which follow the

size in this initial message.
2 32 bits unsigned int major The major format number of this initial

client message, currently the integer
value “1”.

3 32 bits unsigned int minor The minor format number of this initial
client message, currently the integer
value “0”.

4 32 bits unsigned int event_size The number of bytes in each audit event,
currently the integer value “52”.

Once the initial message is sent, the client process will block and wait for temporary files to
appear in the spool directory. As each new file appears, the client will collect the old file and
immediately send the entire file to the server using the established SSL connection. Each file
will be transmitted as a single binary object. The client does not process or interpret the data
being sent. This data consists of back-to-back audit event messages, of the size specified in the
format message, with no additional data or padding interspersed. When the data is received by
the server’s session, special archive meta-data is appended before it is permanently and securely
stored to disk. At no time during processing by the server is the data manipulated, converted, or
otherwise changed.

SAL Software Design Document 1.0 - 31 -

SAL Software Design Document 1.0 - 32 -

Format 2.0 Audit Package Structure
The communication connection between the client and the server is encrypted and TCP based.
The server waits for connections to be established by clients on the default port of 885. On
initialization of the client, the audit client process attempts to connect with the server which
involves negotiating an SSL connection. When a connection is established, the server
authenticates the connection based on its configuration and creates a session that is responsible
for the reception of client audit data. The session is a virtual function that allows for different
types of audit data to be received and processed. The selection of a specific class is based on the
policy defined for that connection and the type of audit data that is expected to be transmitted.
Sessions can be defined to support only one specific type of message and report an error when a
different type is received; or to accept any type of audit event that may cross the connection.
Each audit message that comes across the connection has a message header. The header is used
to define the type of audit message, its size in bytes, a priority, and a facility. The payload of the
audit message will follow the header. The header is defined below:.

Table 4 - Audit Event Structure

Sequence Size Type Name Comments
1 32 bits unsigned int size The number of bytes which follow the

size in this initial message.
2 32 bits unsigned int major The major format number of this initial

client message, currently the integer
value “2”.

3 32 bits unsigned int minor The minor format number of this initial
client message, currently the integer
value “0”.

4 16 bits unsigned int ae_t Audit event type.
0 = blob
1 = string

5 16 bits unsigned int ae_sub Audit Event subtype
0 = Kernel Audit Event
1 = Client Version Event
2 = syslog
3..N = not used

6 32 bits unsigned int size Number of bytes used to store audit
event including header and payload.

7 16 bits unsigned short priority Alert priority
0 = no priority.
1..N = The higher the number the
higher the priority.
(SAL server does not respond to the
priority)

8 16 bits unsigned short facility Indicates where the message came from
0 = Kernel Audit Event
(SAL server does not respond to the
facility)

	1.0Identification
	1.1Background

	2.0Document Overview
	References
	High Level Design and Architecture
	4.1Use of Encryption with SAL
	4.2Trade Offs
	4.3High Level Design of the Components
	4.3.1Instrumented Client
	4.3.2SAL Log Server
	4.3.3SAL Java GUI
	
	gui_config.pl

	4.3.4SAL Audit Viewer
	4.3.5Configuration File Example

	5.0Detail design of Components
	6.0Glossary
	Appendix A – Requirements traceability/System Cal
	Appendix B – Secure Auditing for Linux \(SAL\)�
	Client Data Structures
	Kernel Audit Event
	Audit Daemon Data Structure
	Client – Server Data Structures
	Format 1.0 Audit Package Structure
	Format 2.0 Audit Package Structure

